Kat Husar, Mikery Reilly, Hamah Johnson, Eric Fawcett Presentation Outline

Stanley (old)

$$
(-1)^{n} X_{G}(-1)=\# \text { of acyclic }
$$

- Please intercept me to ash $\overbrace{}^{\text {questions }}$ or clarifications

Zaslauslly definitions
examples of cycles in signed directed graphs generalization of Stanken to signed graphs

Stanley's theorem
From Dr.Chmutov's Lecture notes:
1.3 Stanley's theorem. For a graph G with n vertices, $(-1)^{n} \chi_{G}(-1)=\#$ of acyclic orientations of G.

Steps to proving this:
J. 1 every proper coloring has an associated orientation
$1.2 \bar{x}(\lambda)=(-1)^{\rho} x(-\lambda)$
1.3 goal

Definitions and variables

- G is a finite graph with out loops or multredges

- $V=V(G)$ is the set of verticies of graph G
- $x=x(6)$ is the set of edges of G

$$
\begin{aligned}
& V(G)=\{A, B, C, D, E\} \\
& X(G)=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{3}\right\} \\
& e_{1}=\{B, A\}
\end{aligned}
$$

$$
\begin{aligned}
& p_{a}=|v(G)|=5 \\
& =|x(G)|=5
\end{aligned}
$$

- $p=|V(G)|$ the number of verticies in G

$$
q=|x(G)|=5
$$

- $q=|X(G)|$ the number of edges in 6
- orientation - an assignment of a direction to each edge denoted by $u \rightarrow v$ or $v \rightarrow u$
- acyclic - an orientation of G has no directed cycles acyclic

- $\chi(\lambda)=\chi(G, \lambda)$ is the chromatic polynomial of G evaluated at λ colors for $\lambda \in \mathbb{N} \quad \chi(G, \lambda)=\#$ of proper colorings in λ colors - K is any map $K: V \rightarrow\{1, r, \ldots \lambda\}$ ie. K is a coloring
- O will be a certain orientation
- $\bar{x}(\lambda)$ is $\chi(\lambda)$ with a different condition
- improper coloring is where an edge $\{u, v\}$ has $K(u)=k(v)$

Proposition 1.1 - Every proper coloring has an associated orientation 0
$X(\lambda)$ is equal to the number of pairs $(K, 0)$
recall K is any map $K: V \rightarrow\{1,2, \ldots \lambda\} \quad$ (a coloring)
O is an orientation of G with the following conditions
(1) the orientation \mathcal{O} is acyclic
(yes this is redundant but it helps do transition to \bar{x})
(2) If $u \rightarrow v$ in the orientation 0 , then $K(u)>K(v)$

Lets do an example to understand (K, O) :
Ex 1.
Let G be

and let $\lambda=3$ thus $K: V \rightarrow\{1,2,3\}$
I an going to pick K
note that the orientation rule (2) does not allow improper colorings

Lets orient this graph based on the coloring
(2) If $u \rightarrow v$ in the orientation 0 , then $K(u)>K(v)$

Then $x(3)=\#$ of $(k, 0)$

This example should give you intuition about the proof so I will brefly touch upon the proof, but after this presentation you should go bach and convince yourself if you truly care about math.
proof 1.1

* note that condition (2) forces the graph to be acyclic

Assume to get a contradiction that there is a cycle

$$
u \rightarrow v \rightarrow w_{1} \rightarrow w_{2} \cdots \rightarrow v
$$

but then based on condition z :

$$
\underline{K}(u)>K(v)>K\left(w_{1}\right) \cdots \geqslant K(u)
$$

But This is Wrong!!! sine $k(v)+k(u)$ Thus condition 2 for as acyclicity
(2) If $u \rightarrow v$ in the orientation 0 , then $K(u)>K(v)$

- note that condition (2) implies that the coloring \mathcal{K} is proper (2) If $u \rightarrow v$ in the orientation O, then $K(u)>K(v)$ since

$$
K(u)>K(v) \Rightarrow K(u) \neq K(v)
$$

Thus if you have a pair $(K, O), K$ most be proper

Conversley if K is a proper coloring then it corespoass to a unique (K, O) pair:
Lets orient this graph based on the coloring

Thus \# of pairs $(K, O)=\#$ of $K=\#$ of proper colorings $=\chi(\lambda)$

Now we are going to define $\bar{x}(\lambda)$:
$\bar{\chi}(\lambda)$ is equal to the number of pairs $(k, 0)$ recall K is any map $K: V \rightarrow\{1,2, \ldots \lambda\} \quad$ (a coloring) O is an orientation of G with the following conditions
(1) the orientation \mathcal{O} is acyclic
(not redundant anymore)
(2) If $u \rightarrow v$ in the orientation 0 , then $K(u) \geq k(v)$

Theorem $1.2 \quad \bar{x}(\lambda)=(-1)^{p} x(-\lambda)$ for $\lambda \in \mathbb{Z}$ where $\lambda \geq 0$ and $p=\#$ of vertices this will be proved using induction, but first some properties of $\bar{x}(x)$: recall that $x(\lambda)$ has the following properties:
(i) $X_{0}(\lambda)=\lambda$

- there are λ way

8 to color this vertex

$$
\begin{aligned}
& \text { (ii) } x_{G, 山 G_{2}}(\lambda)=x_{G_{1}}(\lambda) \cdot x_{G_{2}}(\lambda)^{\text {w }} \\
& \text { (iii) } x_{G}=x_{G-e}(\lambda)-x_{G / e}(\lambda)
\end{aligned}
$$

and so $\bar{x}(\lambda)$ has similar properties:
(i) $\bar{X}_{0}(\lambda)=\lambda$
(ii) $\bar{x}_{G_{1} 山 G_{2}}(\lambda)=\bar{x}_{G_{1}}(\lambda) \cdot \bar{x}_{G_{2}}(\lambda)$
(iii) $\bar{x}_{G}=\bar{x}_{G-e}(\lambda)+\bar{x}_{G / e}(\lambda)$
(i) and (ii) follow from the definition so just need to prove (iii)

$$
\begin{aligned}
& \text { let } e=\{u, v\} \\
& k: V(G-e) \rightarrow\{1,2, \ldots \lambda\}
\end{aligned}
$$

(1) is the osicatation of $6-e$ $G-e$ with orientation (O) that corresponds with K based on (must be acyclic !!)
the definition of $\bar{x}(\lambda)$
(1), is the orientation of G with $u \rightarrow v$
O_{2} is the orientation of G with $v \rightarrow u$
note K is defined on $V(G)=V(G-e)$

Claim:

G with orientation O_{1}

G with orientation O_{2}
for every pair $(0, K)$ either one of (θ, K) and $\left(O_{2}, K\right)$ fits with the definition for $\bar{x}(\lambda)$ or both work
So $\bar{X}(G, \lambda)=[\bar{x}(G-e)-\bar{x}(G / e)]+z \cdot \bar{x}(G / e)$ of θ_{1} and θ_{2}

$$
=\bar{x}(G-e)+\bar{x}(G / e) \quad \text { \& you need to }
$$

proof:
Case 1: $K(u)>K(v)$ since both O_{1} and O_{2} work
O_{2} not compatible $\quad v \rightarrow u$ but $k(v) \neq K(u)$
O, acyclic: assume to get a contradiction the following arch exists:

$$
\underline{u \rightarrow v} \rightarrow \mathrm{~s} \rightarrow a \rightarrow d \rightarrow \ldots \ldots \underline{u}
$$

but then $k(u)>k(u)$ which is false

Case 2: $k(v)>k(u)$
similar to case 1 but
θ_{2} is acyclic and θ_{1} is not compatible

$$
=\text { case } 3 \leq: K(u)=K(v)
$$

both θ_{1} and θ_{2} are compatible with condition (2) at least 1 of O_{1} and O_{2} is acyclic:
assume to get a contradiction that both have wy cles
$\theta_{1} \quad u \rightarrow v \rightarrow K \rightarrow i \rightarrow n \rightarrow d \rightarrow \ldots \rightarrow u$
$\mathrm{O}_{2} \quad v \rightarrow u \rightarrow d \rightarrow a \rightarrow n \rightarrow c \rightarrow e \rightarrow \ldots \rightarrow V$
(1) $\quad \underline{V} \rightarrow K \rightarrow i \rightarrow n \rightarrow d \rightarrow \ldots \rightarrow u \rightarrow d \rightarrow a \rightarrow n \rightarrow c \rightarrow e \rightarrow \ldots \rightarrow V$

THIS IS BAD: contradicts that (1) is acyclic
last step in proof? Both O_{1} and O_{2} are acyclic for $\bar{x}(G / e)$ pairs
Make a bijection $\Phi(\mathbb{K}, 0)=\left(K^{\prime}, 0^{\prime}\right)$
both θ_{1}, and θ_{2} are acyclic

$$
k^{\prime}: G / e \rightarrow\{1,2, \ldots, \lambda\}
$$

(1) is acyclic orientation of Gie and compatible with K^{\prime}

$$
V(G / e)=(V(G-e)-\{v, v\}) \cup\{z\}
$$

$$
x(G / e)=x(G-e)
$$

O define the bijection:

$$
\begin{aligned}
& k^{\prime}(w)=k(w) \text { for } w \in V(G / e)-\{u, v\} \\
& k^{\prime}(z)=k(u)=k(v)
\end{aligned}
$$

$w_{1} \rightarrow w_{2}$ in 0^{\prime} iff $w_{1} \rightarrow w_{2}$ in (1)

$$
\begin{aligned}
\bar{x}(G, \lambda)= & {[\bar{x}(G-e)-\bar{x}(G / e)]+2 \cdot \bar{x}(G / e) } \\
& =\bar{x}(G-e)+\bar{x}(G / e)
\end{aligned}
$$

Induction time: $\bar{x}(\lambda)=(-1)^{p} x(-\lambda)$ for $\lambda \in \mathbb{Z}$ where $\lambda \geq 0$ and $p=\#$ of (complete)
and so $\bar{\chi}(\lambda)$ has similar properties:
(i) $\bar{X}_{0}(\lambda)=\lambda$
(ii) $\bar{X}_{G, \nu G_{2}}(\lambda)=\bar{X}_{G_{1}}(\lambda) \cdot \bar{x}_{G_{2}}(\lambda)$
(iii) $\bar{x}_{G}=\bar{x}_{G-e}(\lambda)+\bar{x}_{G / e}(\lambda)$
base case: $\bar{x} \cdot(\lambda)=\lambda=(-1)^{\prime} \cdot x(-\lambda)=-1 \cdot-\lambda$
assume: that for $p+q \leq k$

$$
\bar{x}(\lambda)=(-1)^{p} \times(-\lambda)
$$

Induct on sum of verticies and edges
note: if you have a bunch of verticies unconnected just apply proputy?
$k+1$ th case: G is a graph sit. $p^{\prime}+q^{\prime}=k+1$
$\bar{x}(G, \lambda)=\bar{x}(G-e), \lambda)+\bar{x}(G / e, \lambda)$ of note $G-e$ has $q^{\prime}-1$ edges

$$
=(-1)^{p^{\prime}} X(G-e,-\lambda)+(-1)^{p^{\prime}-1} X(G / e,-\lambda)
$$

$$
\text { so verticies }+ \text { edges }=k
$$

$$
=(-1)^{P^{\prime}}[\chi(G-e,-\lambda)-\chi(G / e,-\lambda)]
$$

of ole nate Gie has $q^{\prime}-1$ edges and $p^{\prime}-1$ vertices so verticies + edges $=k-1$

$$
=(-1)^{p^{\prime}} \times(6,-\lambda)
$$

What was the point of this entire proof?
Stanley's Theorem: $(-1)^{p} X_{G}(-1)=\#$ acyclic orientations
1.2: $\bar{x}(\lambda)=(-1)^{p} x(-\lambda) \quad$ if $\lambda=1$ then all the K are the same and compatible with (1)

$$
\begin{aligned}
& \bar{X}(\lambda) \text { is equal to the number of pairs }(K, O) \\
& \text { recall } K \text { is any map } K: V \rightarrow\{1,2, \ldots \lambda\} \text { (a coloring) } \\
& (O \text { is an orientation of } G \text { with the following conditions } \\
& \text { (1) the orientation } O \text { is acyclic } \\
& \text { (2) If } u \rightarrow V \text { in redundant anymore) the orientation } O \text {, then } K(u) \geq K(v)
\end{aligned}
$$

so $\bar{X}(1)=\#(k, 0)$ pairs $=\# 0$
= acyclic orientations

$$
\bar{x}(1)=(-1)^{p} x(-1)
$$

