Kat Husar, Mikery Reilly, Humah Johnson, Eric Fawcett Presentation Outline · Please ignore spelling errors · Please intrupt me to ask questions or clarifications Stanley (old) (-1)" XG (-1)= # of a cylic orientations Zaslavsky definitions examples of cycles in signed directed graphs openeralization of stanley to signed graphs ∋∰⇔ Stanley's theorem Steps to proving this'. From Dr. Chmutou's Lecture notes: 1. every proper coloring has an associated orientation **Stanley's theorem.** For a graph G with n vertices, $(-1)^n \chi_G(-1) = \# \text{ of acyclic orientations of } G.$ $\overline{\chi}(\lambda) = (-1)^{p} \chi(-\lambda)$ 1.2 ł 1.3 lnop variables Definitions and · G is a finite graph with out loops or multiedges · V = V(G) is the set of verticies of graph G VCG)= {A,B,C,D,E} X=X(6) is the set of edges of G $X(G) = \{e_1, e_2, e_3, e_4, e_5\}$ e, = 38, A3 · e EX is an unorbered pair {u, v3 of verticies where u = v $\rho = |V(G)| = 5$ $q = 1 \times (6) = 5$ p = |V(G)|the number of verticies in G not acyclic ·q = 1 × (G) 1 the number of edges in G C cycle ABCA 10 2 45 E · orientation - an assignment of a direction to each edge denoted by u->v or v->u acyclic (B · acyclic - an orientation of G has no directed cycles

•
$$\chi(\lambda) = \chi(G,\lambda)$$
 is the character polynomial of G evaluated at λ colors
for $\lambda \in IN$ $\chi(G,\lambda) = H$ of proper colorings in λ colors
• K is any map $K: V \rightarrow \S I, Z, \dots, \lambda \S$ is. K is a coloring
• O will be a cortain orientation
• $\chi(\lambda)$ is $\chi(\lambda)$ with a different condition
• $\chi(\lambda)$ is $\chi(\lambda)$ with a different condition
• improper coloring is where an edge $\{U, V\}$ has $K(u) = K(v)$
• \mathbb{C}
• Proposition $I = I$ = Every proper coloring has an associated orientation O
• $\chi(\lambda)$ is equal to the number of pairs (R, O)
• recall K is any map $K: V \rightarrow \S I, Z, \dots, \lambda \S$ (a coloring)
• O is an orientation of G with the following conditions
• (1) the orientation O is acyclic
• $(y = H his is relevabant bit it helps to transition to χ
• (Z) IF $U \rightarrow V$ in the orientation O , then $K(Q) \otimes K(v)$
• Lets do an example to understand (K, O)
• T on going to pick K
• $\chi(X) = M his scheduler X
• $\chi(X) = M his scheduler X$
• $\chi(X) = M his scheduler X
• $\chi(X) = M his scheduler X
• $\chi(X) = M his scheduler X
• $\chi(X) = M his scheduler$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

This example should give you intuition about the proof so I will breifly touch upon the proof, but after this presentation you should go back and convince yourself if you truly cure about math. proof lel condition [2] forces the gruph to be acyclic * note that STACE 1>3 is False Assume to get a contradiction that there is a cycle 2 but then based on condition Z: $\frac{\chi(\upsilon) > \chi(v) > \chi(\omega_1) \dots > \chi(\upsilon)}{\omega_1}$ since K(v) ≯ K(v) Bu **his** is Wrong condition 2 forces acyclicity Thus (2) IF U -> V in the orientation O, then K (4)> K(V) that condition (2) implies that the coloring K is proper · note sina $K(u) > K(v) \implies K(u) \neq K(v)$ (2) IF $u \rightarrow v$ in the orientation O, then $K(u) \geq K(v)$ Thus if you have a pair (K, O), K must be proper 2 2 \times ;f K is a proper coloring then it corresponds to a unique (K, O) pair a Conversley Lets this graph based on the coloring orient 0 # of pairs $(\mathcal{K}, \mathcal{O}) = #$ of $\mathcal{K} = #$ of proper colorings = $\mathcal{X}(\mathcal{X})$ Thus

Now we are joing to define
$$\overline{X}(\lambda)$$
:
 $\overline{X}(\lambda)$ is equal to the number of pairs (K, O)
recall K is any map $K: V \rightarrow S1, 2, ..., \lambda$? (a coloring)
 O is an orientation of G with the following conditions
(1) the orientation O is acyclic
(a) If $u \rightarrow v$ in the orientation O , then $K(u) \geq K(v)$
Theorem 1.2 $\overline{X}(\lambda) = (-1)^{e} X(-\lambda)$ for $\lambda \in \mathbb{Z}$ where $\lambda \geq 0$ and $p=4$ of
this will be proved using induction, but first some proputes of $\overline{X}(\lambda)$:
recall that $X(\lambda)$ has the following proputes:
(i) $X_{G}, uG_{G}(\lambda) = X_{G}(\lambda) + X_{G}(\lambda)$
dulater contents is a cyclic
(ii) $\overline{X}_{G}(\lambda) = \overline{X}_{G}(\lambda) + X_{G}(\lambda)$

(ii)
$$\overline{\chi}_{G, \sqcup G_2}(\lambda) = \overline{\chi}_{G_1}(\lambda) \cdot \overline{\chi}_{G_2}(\lambda)$$

(iii) $\overline{\chi}_G = \widehat{\chi}_{G-e}(\lambda) + \overline{\chi}_{G/e}(\lambda)$
deletion contraction

Induction time: $\overline{X}(\lambda) = (-1)^{p} X(-\lambda)$ for $\lambda \in \mathbb{Z}$ where $\lambda \ge 0$ and $p=\#$ of (complete)	
and so X(X) has similar proputies:	
	Induct on sum
$(i) \overline{X}_{\bullet}(\lambda) = \lambda$	of verticies and
	edges
(ii) $\overline{\chi}_{G, \cup G_2}(\lambda) = \overline{\chi}_{G, (\lambda)} \cdot \overline{\chi}_{G, (\lambda)}$	
$(ii) \overline{X} = \widehat{X} = (\lambda) + \overline{X} = (\lambda) $	
$\frac{(iii)}{\chi_{G}} = \frac{\chi_{G-e}(\lambda) + \chi_{G/e}(\lambda)}{\frac{1}{2}}$	
	note: if
base case: $\overline{\times}_{\bullet}(\lambda) = \lambda = (-11^{\bullet} \times (-\lambda) = -1^{\bullet}$	-7 you have a bunch
assume: that for $p+q \leq k$	of verticies
1	Un connected just apply property Z
$\overline{X}(\lambda) = (-1)^{p} \times (-\lambda)$	
k + 1 + h case: G is a graph s.t. $p' + q' = k + 1$	
$\overline{\chi}(G,\lambda) = \overline{\chi}(G-e),\lambda) + \overline{\chi}(G/e,\lambda)$	
$= (-1)^{p^{2}} \chi (G_{-e_{j}} - \lambda) + (-1)^{p^{2} - 1} \chi (G_{e_{j}} - \lambda)$	the ander Gle har a'-1 els
$= (-1) \left[\times (G-e, -\lambda) - \times (G/e, -\lambda) \right] and$	p'-1 verticies so verticies + edges = k-1
$= (-1)^{p} \times (6, -3) $	
What was the point of this entire proof?	
Stanlery's Theorem: (-1) × (-1)= # acyclic orientations	
Stanleys hear a constant	HT acyclic orientations
	= 1 1 1 1
$1.2: \overline{\chi}(\lambda) = (-1)^{\ell} \chi(-\lambda) \implies : f \lambda$	= 1 then all the K are the same and compatible with O
$\overline{\chi}(\lambda)$ is equal to the number of pairs (K, O)	
	$50 = \chi(1) = \#(k, 0)$ pairs = $\#(0)$
() is an orientation of G with the following conditions	$x = \chi(1)^{-} + (\Lambda_{-})^{-} pairs - + 0^{-}$
 (1) the orientation O is acyclic (aut redundant anymore) (2) If u→v in the orientation O, then K(u)=K(v) 	= # a cyclic orientations
(2) If $u \rightarrow v$ in the occupation 0 , then $K(u) \ge K(v)$	$\widetilde{\chi}(1) = (-1)^p \chi(-1)$

٧, v₃ + v₄ ٧_Z ٧, -V, vz -V4 - V_z